Digital catalogue


 

Choice of metadata University Online Library

Page 1, Results: 1

Report on unfulfilled requests: 0

83032
Капцов, О. В.
    Методы интегрирования уравнений с частными производными [Электронный ресурс] : монография / О. В. Капцов. - Москва : Физматлит, 2009. - 180 с. - Режим доступа: электронная библиотечная система «Университетская библиотека ONLINE», требуется авторизация. - ISBN 978-5-9221-1155-3 : Б. ц.

ББК 22.161.2

Аннотация: В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных уравнений, подробно описан новый способ интегрирования - метод линейных определяющих уравнений. С характеристиками систем уравнений связываются инвариантные тензоры и интегральные инварианты, обсуждаются локальные законы сохранения. В качестве приложений рассмотрены математические модели механики сплошной среды: от гидродинамики до нелинейной теплопроводности. Книга рассчитана на широкий круг читателей - математиков, механиков, физиков, преподавателей вузов и студентов.

Доп.точки доступа:
Физматлит

Капцов, О. В. Методы интегрирования уравнений с частными производными [Электронный ресурс] : монография / О. В. Капцов, 2009. - 180 с.

1.

Капцов, О. В. Методы интегрирования уравнений с частными производными [Электронный ресурс] : монография / О. В. Капцов, 2009. - 180 с.


83032
Капцов, О. В.
    Методы интегрирования уравнений с частными производными [Электронный ресурс] : монография / О. В. Капцов. - Москва : Физматлит, 2009. - 180 с. - Режим доступа: электронная библиотечная система «Университетская библиотека ONLINE», требуется авторизация. - ISBN 978-5-9221-1155-3 : Б. ц.

ББК 22.161.2

Аннотация: В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных уравнений, подробно описан новый способ интегрирования - метод линейных определяющих уравнений. С характеристиками систем уравнений связываются инвариантные тензоры и интегральные инварианты, обсуждаются локальные законы сохранения. В качестве приложений рассмотрены математические модели механики сплошной среды: от гидродинамики до нелинейной теплопроводности. Книга рассчитана на широкий круг читателей - математиков, механиков, физиков, преподавателей вузов и студентов.

Доп.точки доступа:
Физматлит

Page 1, Results: 1

 

All acquisitions for 
Or select a month