Choice of metadata IPR SMART
Page 1, Results: 2
Report on unfulfilled requests: 0
1.
Подробнее
91735
Судоплатов, С. В.
Классификация счётных моделей полных теорий в 2 частях. Ч.1 : монография / Судоплатов С. В. - Новосибирск : Новосибирский государственный технический университет, 2018. - 376 с. - ISBN 978-5-7782-3524-3 (ч.1), 978-5-7782-3523-6 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
ББК 22.1
Кл.слова (ненормированные):
ациклический граф -- генерическая конструкция -- детерминированный моноид -- классификация моделей -- конструкция хрушовского -- математическая логика -- полная теория -- счётная модель -- теория моделей -- характеризация эренфойхтовости
Аннотация: Книга является первой частью монографии «Классификация счётных моделей полных теорий», состоящей из двух частей. В монографии излагается классификация счётных моделей полных теорий относительно двух основных характеристик (предпорядков Рудин-Кейслера и функций распределения числа предельных моделей) применительно к важнейшим классам счётных теорий. К таким классам относятся класс эренфойхтовых теорий (т.е. полных теорий с конечным, но большим единицы числом попарно неизоморфных счетных моделей), класс малых теорий (т.е. полных теорий, имеющий счётное число типов) и класс счётных теорий с континуальным числом типов. Для реализации основных характеристик счётных полных теорий приводятся синтаксические генерические конструкции, обобщающие конструкции Йонсона-Фраиссé и конструкции Хрушовского. На основе этих конструкций представляется решение проблемы Гончарова-Миллара о существовании эренфойхтовой теории, имеющей счётные, не почти однородные модели. С помощью модификации генерической конструкции Хрушовского-Хервига приводится решение проблемы Лахлана о существовании стабильной эренфойхтовой теории. В первой части рассмотрена характеризация эренфойхтовости, свойства эренфойхтовых теорий, генерические конструкции, а также алгебры распределений бинарных полуизолирующих формул полной теории. Для интересующихся математической логикой.
Судоплатов, С. В.
Классификация счётных моделей полных теорий в 2 частях. Ч.1 : монография / Судоплатов С. В. - Новосибирск : Новосибирский государственный технический университет, 2018. - 376 с. - ISBN 978-5-7782-3524-3 (ч.1), 978-5-7782-3523-6 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК |
Кл.слова (ненормированные):
ациклический граф -- генерическая конструкция -- детерминированный моноид -- классификация моделей -- конструкция хрушовского -- математическая логика -- полная теория -- счётная модель -- теория моделей -- характеризация эренфойхтовости
Аннотация: Книга является первой частью монографии «Классификация счётных моделей полных теорий», состоящей из двух частей. В монографии излагается классификация счётных моделей полных теорий относительно двух основных характеристик (предпорядков Рудин-Кейслера и функций распределения числа предельных моделей) применительно к важнейшим классам счётных теорий. К таким классам относятся класс эренфойхтовых теорий (т.е. полных теорий с конечным, но большим единицы числом попарно неизоморфных счетных моделей), класс малых теорий (т.е. полных теорий, имеющий счётное число типов) и класс счётных теорий с континуальным числом типов. Для реализации основных характеристик счётных полных теорий приводятся синтаксические генерические конструкции, обобщающие конструкции Йонсона-Фраиссé и конструкции Хрушовского. На основе этих конструкций представляется решение проблемы Гончарова-Миллара о существовании эренфойхтовой теории, имеющей счётные, не почти однородные модели. С помощью модификации генерической конструкции Хрушовского-Хервига приводится решение проблемы Лахлана о существовании стабильной эренфойхтовой теории. В первой части рассмотрена характеризация эренфойхтовости, свойства эренфойхтовых теорий, генерические конструкции, а также алгебры распределений бинарных полуизолирующих формул полной теории. Для интересующихся математической логикой.
2.
Подробнее
91736
Судоплатов, С. В.
Классификация счётных моделей полных теорий в 2 частях. Ч.2 : монография / Судоплатов С. В. - Новосибирск : Новосибирский государственный технический университет, 2018. - 452 с. - ISBN 978-5-7782-3525-0 (ч.2), 978-5-7782-3523-6 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
ББК 22.1
Кл.слова (ненормированные):
генерическая теория -- классификация моделей -- математическая логика -- полная теория -- предпорядок рудин-кейслера -- предранговая функция -- проблема гончарова-миллара -- проблема лахлана -- счётная модель
Аннотация: Книга является второй частью монографии «Классификация счётных моделей полных теорий», состоящей из двух частей. В книге рассмотрены генерические эренфойхтовы теории и реализации предпорядков Рудин-Кейслера в этих теориях; решение проблемы Гончарова-Миллара о существовании эренфойхтовой теории, имеющей счётные, не почти однородные модели; стабильные генерические эренфойхтовы теории (решение проблемы Лахлана); гиперграфы простых моделей и распределения счётных моделей малых теорий, а также распределения счётных моделей теорий с континуальным числом типов. Для интересующихся математической логикой.
Судоплатов, С. В.
Классификация счётных моделей полных теорий в 2 частях. Ч.2 : монография / Судоплатов С. В. - Новосибирск : Новосибирский государственный технический университет, 2018. - 452 с. - ISBN 978-5-7782-3525-0 (ч.2), 978-5-7782-3523-6 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК |
Кл.слова (ненормированные):
генерическая теория -- классификация моделей -- математическая логика -- полная теория -- предпорядок рудин-кейслера -- предранговая функция -- проблема гончарова-миллара -- проблема лахлана -- счётная модель
Аннотация: Книга является второй частью монографии «Классификация счётных моделей полных теорий», состоящей из двух частей. В книге рассмотрены генерические эренфойхтовы теории и реализации предпорядков Рудин-Кейслера в этих теориях; решение проблемы Гончарова-Миллара о существовании эренфойхтовой теории, имеющей счётные, не почти однородные модели; стабильные генерические эренфойхтовы теории (решение проблемы Лахлана); гиперграфы простых моделей и распределения счётных моделей малых теорий, а также распределения счётных моделей теорий с континуальным числом типов. Для интересующихся математической логикой.
Page 1, Results: 2