Choice of metadata IPR SMART
Page 1, Results: 2
Report on unfulfilled requests: 0
1.
Подробнее
92101
Полищук, Д. Ф.
Интеграционная механика. Комплексная методика решения взаимосвязанных нелинейных задач : учебное пособие / Полищук Д. Ф. - Москва, Ижевск : Институт компьютерных исследований, 2019. - 140 с. - ISBN 978-5-4344-0729-8 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
ББК 22.2
Кл.слова (ненормированные):
винтовой брус -- интеграционная механика -- нелинейная задача -- нелинейная статика -- физическое явление -- экспериментальная физика
Аннотация: В книге изложены основные положения интеграционной механики. Интеграционная механика занимается сложными нелинейными задачами, где имеет место синтез задач с различной физикой явлений. Единство математики, физики, прикладной философии позволяет качественнее анализировать нелинейные эффекты, а применение аналитико-конструкторского алгоритма повышает эффективность поиска новых синтезированных решений. На основе классических нелинейных уравнений Кирхгофа–Клебша рассмотрены пространственные нелинейные колебания для тонкого винтового бруса, различные виды упругой потери устойчивости, нелинейная статика. Разработан метод реализации новых физических явлений при проектировании пружинных механизмов, работающих с инерционным соударением витков. Единство колебаний, устойчивости, прочности и удара винтового деформированного движения предложено использовать как основу серии гипотез для качественной модели единой физики природы. Книга предназначена для студентов по специальностям «Динамика и прочность машин», «Прикладная математика», а также для инженеров, увлекающихся новыми методами творчества.
Полищук, Д. Ф.
Интеграционная механика. Комплексная методика решения взаимосвязанных нелинейных задач : учебное пособие / Полищук Д. Ф. - Москва, Ижевск : Институт компьютерных исследований, 2019. - 140 с. - ISBN 978-5-4344-0729-8 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК |
Кл.слова (ненормированные):
винтовой брус -- интеграционная механика -- нелинейная задача -- нелинейная статика -- физическое явление -- экспериментальная физика
Аннотация: В книге изложены основные положения интеграционной механики. Интеграционная механика занимается сложными нелинейными задачами, где имеет место синтез задач с различной физикой явлений. Единство математики, физики, прикладной философии позволяет качественнее анализировать нелинейные эффекты, а применение аналитико-конструкторского алгоритма повышает эффективность поиска новых синтезированных решений. На основе классических нелинейных уравнений Кирхгофа–Клебша рассмотрены пространственные нелинейные колебания для тонкого винтового бруса, различные виды упругой потери устойчивости, нелинейная статика. Разработан метод реализации новых физических явлений при проектировании пружинных механизмов, работающих с инерционным соударением витков. Единство колебаний, устойчивости, прочности и удара винтового деформированного движения предложено использовать как основу серии гипотез для качественной модели единой физики природы. Книга предназначена для студентов по специальностям «Динамика и прочность машин», «Прикладная математика», а также для инженеров, увлекающихся новыми методами творчества.
2.
Подробнее
91932
Полищук, Д. Ф.
Интеграционная механика. Физико-математический полигон для численных методов решения взаимосвязанных нелинейных задач : учебное пособие / Полищук Д. Ф. - Москва, Ижевск : Институт компьютерных исследований, Регулярная и хаотическая динамика, 2019. - 86 с. - ISBN 978-5-4344-0727-4 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
ББК 22.2
Кл.слова (ненормированные):
винтовой брус -- интеграционная механика -- нелинейная задача -- нелинейная статика -- численный метод
Аннотация: В книге даны три уровня физико-математического полигона для проверки численных методов, основанных на численных расчетах и экспериментальной проверке частотного спектра пространственных колебаний, продольной и местных видов потери устойчивости, нелинейной статики тонкого винтового бруса. Первый уровень позволяет дать оценку численным методам для низших частот продольных, крутильных и поперечных колебаний, второй и третий уровни предназначены для оценки численных методов, позволяющих анализировать задачи с несамосопряженными операторами и задачи с плохо обусловленным решением. Расчетные параметры полигона сопоставлены с экспериментальными результатами. Книга предназначена для студентов по специальности «Динамика и прочность машин», «Прикладная математика», а также для инженеров и специалистов, использующих современные численные методы.
Доп.точки доступа:
Полищук, А. Д.
Полищук, Д. Ф.
Интеграционная механика. Физико-математический полигон для численных методов решения взаимосвязанных нелинейных задач : учебное пособие / Полищук Д. Ф. - Москва, Ижевск : Институт компьютерных исследований, Регулярная и хаотическая динамика, 2019. - 86 с. - ISBN 978-5-4344-0727-4 : Б. ц.
Книга находится в Премиум-версии IPR SMART.
УДК |
Кл.слова (ненормированные):
винтовой брус -- интеграционная механика -- нелинейная задача -- нелинейная статика -- численный метод
Аннотация: В книге даны три уровня физико-математического полигона для проверки численных методов, основанных на численных расчетах и экспериментальной проверке частотного спектра пространственных колебаний, продольной и местных видов потери устойчивости, нелинейной статики тонкого винтового бруса. Первый уровень позволяет дать оценку численным методам для низших частот продольных, крутильных и поперечных колебаний, второй и третий уровни предназначены для оценки численных методов, позволяющих анализировать задачи с несамосопряженными операторами и задачи с плохо обусловленным решением. Расчетные параметры полигона сопоставлены с экспериментальными результатами. Книга предназначена для студентов по специальности «Динамика и прочность машин», «Прикладная математика», а также для инженеров и специалистов, использующих современные численные методы.
Доп.точки доступа:
Полищук, А. Д.
Page 1, Results: 2