Электрондық каталог


 

База данных: IPR SMART кітаптар

Беті 1, Нәтижелерін: 2

Отмеченные записи: 0

91401
Гультяева, Т. А.
    Методы статистического обучения в задачах регрессии и классификации : монография / Гультяева Т. А. - Новосибирск : Новосибирский государственный технический университет, 2016. - 323 с. - ISBN 978-5-7782-2817-7 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.1

Кл.слова (ненормированные):
svm -- задача -- классификатор -- опорный вектор -- регрессия -- статистика
Аннотация: В монографии рассматриваются вопросы статистического обучения в задачах построения регрессии по методу опорных векторов и в задачах классификации с использованием скрытых марковских моделей (СММ). Для решения задачи устойчивого оценивания модели регрессии по методу опорных векторов (SVM) в условиях зашумленных данных с помехой, имеющей распределение с большим эксцессом или имеющей характер асимметричного засорения, предложено использовать адаптивные и асимметричные функции потерь. Приводятся формулировки двойственных задач квадратичного программирования для этих случаев. Описывается метод квантильной регрессии на основе SVM для произвольной функции потерь. На его основе рассмотрен метод построения доверительных интервалов для отклика, а также непараметрический метод оценки неизвестной дисперсии ошибок наблюдений. Для построения компактной модели регрессии в условиях работы с выборками большого объема предлагаются алгоритмы построения разреженных решений в SVM. Показывается их эффективность в сравнении с классическим методом построения разреженных решений на основе функции нечувствительности Вапника. Описывается модификация SVM, позволяющая строить разреженные решения в условиях гетероскедастичности ошибок наблюдений. Приводятся результаты экспериментальных исследований по построению регрессионных моделей с использованием SVM при мультиколлинеарности данных, автокорреляции и гетероскедастичности ошибок наблюдений. Приводятся результаты исследования подхода к решению задачи классификации наблюдаемых последовательностей, представленных скрытыми марковскими моделями, с использованием инициированных этими моделями признаков. С использованием метода статистического моделирования рассматривается поведение нескольких классификаторов, когда наблюдаемые последовательности подвергались искажению действием на них различных помех. Также проанализированы случаи, когда нарушены одни из априорных представлений либо о наблюдаемых последовательностях, либо о структуре скрытых марковских моделей, описывающих эти последовательности. Книга будет полезна научным сотрудникам и специалистам, сталкивающимся в своей деятельности с необходимостью решения задач построения зависимостей и классификации последовательностей, а также студентам и аспирантам.

Доп.точки доступа:
Попов, А. А.
Саутин, А. С.

Гультяева, Т. А. Методы статистического обучения в задачах регрессии и классификации [Электронный ресурс] : Монография / Гультяева Т. А., 2016. - 323 с.

1.

Гультяева, Т. А. Методы статистического обучения в задачах регрессии и классификации [Электронный ресурс] : Монография / Гультяева Т. А., 2016. - 323 с.


91401
Гультяева, Т. А.
    Методы статистического обучения в задачах регрессии и классификации : монография / Гультяева Т. А. - Новосибирск : Новосибирский государственный технический университет, 2016. - 323 с. - ISBN 978-5-7782-2817-7 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.1

Кл.слова (ненормированные):
svm -- задача -- классификатор -- опорный вектор -- регрессия -- статистика
Аннотация: В монографии рассматриваются вопросы статистического обучения в задачах построения регрессии по методу опорных векторов и в задачах классификации с использованием скрытых марковских моделей (СММ). Для решения задачи устойчивого оценивания модели регрессии по методу опорных векторов (SVM) в условиях зашумленных данных с помехой, имеющей распределение с большим эксцессом или имеющей характер асимметричного засорения, предложено использовать адаптивные и асимметричные функции потерь. Приводятся формулировки двойственных задач квадратичного программирования для этих случаев. Описывается метод квантильной регрессии на основе SVM для произвольной функции потерь. На его основе рассмотрен метод построения доверительных интервалов для отклика, а также непараметрический метод оценки неизвестной дисперсии ошибок наблюдений. Для построения компактной модели регрессии в условиях работы с выборками большого объема предлагаются алгоритмы построения разреженных решений в SVM. Показывается их эффективность в сравнении с классическим методом построения разреженных решений на основе функции нечувствительности Вапника. Описывается модификация SVM, позволяющая строить разреженные решения в условиях гетероскедастичности ошибок наблюдений. Приводятся результаты экспериментальных исследований по построению регрессионных моделей с использованием SVM при мультиколлинеарности данных, автокорреляции и гетероскедастичности ошибок наблюдений. Приводятся результаты исследования подхода к решению задачи классификации наблюдаемых последовательностей, представленных скрытыми марковскими моделями, с использованием инициированных этими моделями признаков. С использованием метода статистического моделирования рассматривается поведение нескольких классификаторов, когда наблюдаемые последовательности подвергались искажению действием на них различных помех. Также проанализированы случаи, когда нарушены одни из априорных представлений либо о наблюдаемых последовательностях, либо о структуре скрытых марковских моделей, описывающих эти последовательности. Книга будет полезна научным сотрудникам и специалистам, сталкивающимся в своей деятельности с необходимостью решения задач построения зависимостей и классификации последовательностей, а также студентам и аспирантам.

Доп.точки доступа:
Попов, А. А.
Саутин, А. С.

126372
Фарафонова, О. В.
    Основы хемометрики и химической метрологии : сборник задач / Фарафонова О. В. - Липецк : Липецкий государственный технический университет, ЭБС АСВ, 2022. - 38 с. - Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 24.4

Кл.слова (ненормированные):
асимметрия -- основы хемометрики -- сравнение дисперсий -- химическая метрология -- эксцесс
Аннотация: Сборник задач по дисциплине «Основы хемометрики и химической метрологии» предназначен для студентов очной формы обучения направлений 04.03.01 «Химия» 2-го курса, 18.03.01 «Химическая технология» 3-го курса и специальности 04.05.01 «Фундаментальная и прикладная химия» 2-го курса.

Доп.точки доступа:
Дергунова, B. C.

Фарафонова, О. В. Основы хемометрики и химической метрологии [Электронный ресурс] : Сборник задач / Фарафонова О. В., 2022. - 38 с.

2.

Фарафонова, О. В. Основы хемометрики и химической метрологии [Электронный ресурс] : Сборник задач / Фарафонова О. В., 2022. - 38 с.


126372
Фарафонова, О. В.
    Основы хемометрики и химической метрологии : сборник задач / Фарафонова О. В. - Липецк : Липецкий государственный технический университет, ЭБС АСВ, 2022. - 38 с. - Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 24.4

Кл.слова (ненормированные):
асимметрия -- основы хемометрики -- сравнение дисперсий -- химическая метрология -- эксцесс
Аннотация: Сборник задач по дисциплине «Основы хемометрики и химической метрологии» предназначен для студентов очной формы обучения направлений 04.03.01 «Химия» 2-го курса, 18.03.01 «Химическая технология» 3-го курса и специальности 04.05.01 «Фундаментальная и прикладная химия» 2-го курса.

Доп.точки доступа:
Дергунова, B. C.

Беті 1, Нәтижелерін: 2

 

Барлық түсімдер 
Немесе қызығушылық танытқан айыңызды таңдаңыз