Электрондық каталог


 

База данных: IPR SMART кітаптар

Беті 1, Нәтижелерін: 4

Отмеченные записи: 0

129171
Егоров, Д. Л.
    Уравнения математической физики : учебное пособие / Егоров Д. Л. - Казань : Издательство КНИТУ, 2021. - 112 с. - ISBN 978-5-7882-3055-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
колебание -- краевая задача -- математика -- теплопроводность -- уравнения -- физика -- частные производные
Аннотация: Представлены основные понятия теории уравнений в частных производных. Рассмотрены наиболее важные уравнения математической физики, особенности постановки соответствующих краевых задач и методы их решения. По каждой теме приведены практические примеры. Предназначено для бакалавров, обучающихся по направлениям подготовки 01.03.02 «Прикладная математика и информатика», 01.03.05 «Статистика», 02.03.03 «Математическое обеспечение и администрирование информационных систем». Подготовлено на кафедре интеллектуальных систем и управления информационными ресурсами.

Егоров, Д. Л. Уравнения математической физики [Электронный ресурс] : Учебное пособие / Егоров Д. Л., 2021. - 112 с.

1.

Егоров, Д. Л. Уравнения математической физики [Электронный ресурс] : Учебное пособие / Егоров Д. Л., 2021. - 112 с.


129171
Егоров, Д. Л.
    Уравнения математической физики : учебное пособие / Егоров Д. Л. - Казань : Издательство КНИТУ, 2021. - 112 с. - ISBN 978-5-7882-3055-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
колебание -- краевая задача -- математика -- теплопроводность -- уравнения -- физика -- частные производные
Аннотация: Представлены основные понятия теории уравнений в частных производных. Рассмотрены наиболее важные уравнения математической физики, особенности постановки соответствующих краевых задач и методы их решения. По каждой теме приведены практические примеры. Предназначено для бакалавров, обучающихся по направлениям подготовки 01.03.02 «Прикладная математика и информатика», 01.03.05 «Статистика», 02.03.03 «Математическое обеспечение и администрирование информационных систем». Подготовлено на кафедре интеллектуальных систем и управления информационными ресурсами.

116392
Шильников, К. Е.
    Геометрические методы в математической физике. Начала анализа на многообразиях : конспект лекций. Учебное пособие / Шильников К. Е. - Москва : Национальный исследовательский ядерный университет «МИФИ», 2020. - 92 с. - ISBN 978-5-7262-2704-7 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
геометрический метод -- математическая физика -- многообразие -- начала анализа
Аннотация: Пособие посвящено введению в анализ на многообразиях как продолжению стандартного курса анализа. Текст основан на курсе лекций «Геометрические методы в математической физике», который автор читал студентам кафедры прикладной математики Национального исследовательского ядерного университета «МИФИ». Рассматриваются понятия гладкого многообразия, основных дифференциально-геометрических объектов на многообразиях и их свойства. Книга будет полезна читателю, интересующемуся современными подходами к уравнениям математической физики, вопросам интегрируемости, симметриям и законам сохранения.

Шильников, К. Е. Геометрические методы в математической физике. Начала анализа на многообразиях [Электронный ресурс] : Конспект лекций. Учебное пособие / Шильников К. Е., 2020. - 92 с.

2.

Шильников, К. Е. Геометрические методы в математической физике. Начала анализа на многообразиях [Электронный ресурс] : Конспект лекций. Учебное пособие / Шильников К. Е., 2020. - 92 с.


116392
Шильников, К. Е.
    Геометрические методы в математической физике. Начала анализа на многообразиях : конспект лекций. Учебное пособие / Шильников К. Е. - Москва : Национальный исследовательский ядерный университет «МИФИ», 2020. - 92 с. - ISBN 978-5-7262-2704-7 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
геометрический метод -- математическая физика -- многообразие -- начала анализа
Аннотация: Пособие посвящено введению в анализ на многообразиях как продолжению стандартного курса анализа. Текст основан на курсе лекций «Геометрические методы в математической физике», который автор читал студентам кафедры прикладной математики Национального исследовательского ядерного университета «МИФИ». Рассматриваются понятия гладкого многообразия, основных дифференциально-геометрических объектов на многообразиях и их свойства. Книга будет полезна читателю, интересующемуся современными подходами к уравнениям математической физики, вопросам интегрируемости, симметриям и законам сохранения.

87943
Костецкая, Г. С.
    Уравнения математической физики эллиптического и параболического типов : учебное пособие / Костецкая Г. С. - Ростов-на-Дону, Таганрог : Издательство Южного федерального университета, 2017. - 116 с. - ISBN 978-5-9275-2477-8 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
задача дирихле -- задача неймана -- интеграл пуассона -- краевая задача -- математическая физика -- метод фурье -- параболический тип -- уравнение -- уравнение лапласа -- эллиптический тип
Аннотация: Пособие написано в соответствии с программой курса «Уравнения математической физики» для естественных факультетов ЮФУ (в данном пособии авторы затрагивают только уравнения эллиптического и параболического типов). Комплексная цель пособия - глубокое освоение теоретического материала, создание базы для применения приобретенных знаний при изучении и исследовании различных разделов науки и техники. На примере разных краевых задач рассмотрены классические методы интегрирования дифференциальных уравнений с частными производными второго порядка и метод интегральных преобразований в бесконечных пределах. Каждый раздел заканчивается серией заданий для самоконтроля и самостоятельной работы, что обеспечивает более глубокое понимание теории, а также тестами рубежного контроля. Дан критерий выставления оценок.

Доп.точки доступа:
Радченко, Т. Н.

Костецкая, Г. С. Уравнения математической физики эллиптического и параболического типов [Электронный ресурс] : Учебное пособие / Костецкая Г. С., 2017. - 116 с.

3.

Костецкая, Г. С. Уравнения математической физики эллиптического и параболического типов [Электронный ресурс] : Учебное пособие / Костецкая Г. С., 2017. - 116 с.


87943
Костецкая, Г. С.
    Уравнения математической физики эллиптического и параболического типов : учебное пособие / Костецкая Г. С. - Ростов-на-Дону, Таганрог : Издательство Южного федерального университета, 2017. - 116 с. - ISBN 978-5-9275-2477-8 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
задача дирихле -- задача неймана -- интеграл пуассона -- краевая задача -- математическая физика -- метод фурье -- параболический тип -- уравнение -- уравнение лапласа -- эллиптический тип
Аннотация: Пособие написано в соответствии с программой курса «Уравнения математической физики» для естественных факультетов ЮФУ (в данном пособии авторы затрагивают только уравнения эллиптического и параболического типов). Комплексная цель пособия - глубокое освоение теоретического материала, создание базы для применения приобретенных знаний при изучении и исследовании различных разделов науки и техники. На примере разных краевых задач рассмотрены классические методы интегрирования дифференциальных уравнений с частными производными второго порядка и метод интегральных преобразований в бесконечных пределах. Каждый раздел заканчивается серией заданий для самоконтроля и самостоятельной работы, что обеспечивает более глубокое понимание теории, а также тестами рубежного контроля. Дан критерий выставления оценок.

Доп.точки доступа:
Радченко, Т. Н.

141170

    Введение в математическую физику : учебно-методическое пособие / Гусев А. С. - Москва : Национальный исследовательский ядерный университет «МИФИ», 2023. - 56 с. - ISBN 978-5-7262-2982-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
линейные уравнения -- математическая физика -- практические задания -- уравнение пуассона
Аннотация: Даны теоретический материал и практические задания для студентов Института нанотехнологий в электронике, спинтронике и фотонике НИЯУ МИФИ, обучающихся по направлению «Электроника и наноэлектроника». Дополняет курс «Уравнения математической физики». Может быть использовано для подготовки к поступлению в магистратуру НИЯУ МИФИ. Краткий курс состоит из девяти занятий. Первое занятие посвящено знакомству с математическим аппаратом физики. Рассматриваются дифференциальные операторы, используемые в математической физике. Тема второго занятия – линейные дифференциальные уравнения с частными производными второго порядка, содержащие две независимые переменные, их классификация и приведение к каноническому виду. Третье занятие посвящено классификации основных уравнений математической физики. Тема четвертого занятия – простейшие задачи о колебаниях струны, продольных и крутильных колебаниях вала, сводящиеся к решению волнового уравнения методом разделения переменных. Приведено волновое уравнение для плоской электромагнитной волны. В пятом разделе рассмотрены задачи о применении метода разделения переменных для простейших уравнений параболического типа. В разделе, посвященном шестому занятию, собраны некоторые задачи, приводящие к решению уравнения Лапласа. Дополнительно в седьмом, восьмом и девятом разделах рассматриваются уравнение Пуассона, классический гармонический осциллятор на примере электромагнитного колебательного контура, а также дисперсионное соотношение для колебаний одномерной моноатомной цепочки. Сформулированы основные краевые задачи и приведены примеры решения. В конце каждого раздела имеются задания для самостоятельной работы и контрольные вопросы. В конце пособия приведены тестовые задания для контроля успеваемости студентов.
Доп.точки доступа:
Гусев, А. С.
Каргин, Н. И.
Рыжук, Р. В.
Рындя, С. М.
Сигловая, Н. В.

Введение в математическую физику [Электронный ресурс] : Учебно-методическое пособие / Гусев А. С., 2023. - 56 с.

4.

Введение в математическую физику [Электронный ресурс] : Учебно-методическое пособие / Гусев А. С., 2023. - 56 с.


141170

    Введение в математическую физику : учебно-методическое пособие / Гусев А. С. - Москва : Национальный исследовательский ядерный университет «МИФИ», 2023. - 56 с. - ISBN 978-5-7262-2982-9 : Б. ц.
Книга находится в Премиум-версии IPR SMART.

УДК
ББК 22.311

Кл.слова (ненормированные):
линейные уравнения -- математическая физика -- практические задания -- уравнение пуассона
Аннотация: Даны теоретический материал и практические задания для студентов Института нанотехнологий в электронике, спинтронике и фотонике НИЯУ МИФИ, обучающихся по направлению «Электроника и наноэлектроника». Дополняет курс «Уравнения математической физики». Может быть использовано для подготовки к поступлению в магистратуру НИЯУ МИФИ. Краткий курс состоит из девяти занятий. Первое занятие посвящено знакомству с математическим аппаратом физики. Рассматриваются дифференциальные операторы, используемые в математической физике. Тема второго занятия – линейные дифференциальные уравнения с частными производными второго порядка, содержащие две независимые переменные, их классификация и приведение к каноническому виду. Третье занятие посвящено классификации основных уравнений математической физики. Тема четвертого занятия – простейшие задачи о колебаниях струны, продольных и крутильных колебаниях вала, сводящиеся к решению волнового уравнения методом разделения переменных. Приведено волновое уравнение для плоской электромагнитной волны. В пятом разделе рассмотрены задачи о применении метода разделения переменных для простейших уравнений параболического типа. В разделе, посвященном шестому занятию, собраны некоторые задачи, приводящие к решению уравнения Лапласа. Дополнительно в седьмом, восьмом и девятом разделах рассматриваются уравнение Пуассона, классический гармонический осциллятор на примере электромагнитного колебательного контура, а также дисперсионное соотношение для колебаний одномерной моноатомной цепочки. Сформулированы основные краевые задачи и приведены примеры решения. В конце каждого раздела имеются задания для самостоятельной работы и контрольные вопросы. В конце пособия приведены тестовые задания для контроля успеваемости студентов.
Доп.точки доступа:
Гусев, А. С.
Каргин, Н. И.
Рыжук, Р. В.
Рындя, С. М.
Сигловая, Н. В.

Беті 1, Нәтижелерін: 4

 

Барлық түсімдер 
Немесе қызығушылық танытқан айыңызды таңдаңыз